MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells

نویسندگان

  • SHANSHAN DENG
  • YANLI ZHANG
  • CHUNDI XU
  • DUAN MA
چکیده

microRNAs (miRNAs or miRS) have been demonstrated to be essential for neural development. miR-125b-2, presented on human chromosome 21, is overexpressed in neurons of individuals with Down syndrome (DS) with cognitive impairments. It has been reported that miR-125b-2 promotes specific types of neuronal differentiation; however, the function of miR-125b-2 in the early development of the embryo has remained to be fully elucidated. In the present study, a mouse embryonic stem cell (mESC) line was stably transfected with a miR-125b-2 lentiviral expression vector and found that miR-125b-2 overexpression did not affect the self-renewal or proliferation of mESCs. However, miR-125b-2 overexpression inhibited the differentiation of mESCs into endoderm and ectoderm. Finally, miR-125b-2 overexpression was found to impair all-trans-retinoic acid-induced neuron development in embryoid bodies. The findings of the present study implied that miR-125b-2 overexpression suppressed the differentiation of mESCs into neurons, which highlights that miR‑125b-2 is important in the regulation of ESC differentiation. The present study provided a basis for the further identification of novel targets of miR-125b-2, which may contribute to an enhanced understanding of the molecular mechanisms of ESC differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs

Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...

متن کامل

Differentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells

Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...

متن کامل

Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell

Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015